X_{t_i}= N.\tau_i.Max(0,L(t_{i-1},t_i)-K)
Given that forward rate:
\tau_i.L(T_{i-1},T_i) = \frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}
Caplet Payoff:
X_{t_i}
= N.\tau_i.Max(0,L(T_{i-1},T_i)-K)
=N.Max(0,\tau_i.L(T_{i-1},T_i)-K.\tau_i)
=N.Max(0,\frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}-K.\tau_i)
Discounting to today:
Caplet Price:
= P(T_{i-1},T_i).N.Max(0,\frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}-K.\tau_i)
= N.Max(0,1-(P(T_{i-1},T_i))(1+K.\tau_i))
= (1+K.\tau_i).N.Max(0,\frac{1}{(1+K.\tau_i)} - P(T_{i-1},T_i))
= N_{zero}.Max(0,K_{zero} -S_{zero})
This the pricing of a put option on a Zero Coupon Bond with
Notional: = (1+K.\tau_i).N
Strike:=\frac{1}{(1+K.\tau_i)}
This will be important when we compare with Hull White 1 Factor Zero Coupon Bond Put European Option. Under the Hull White 1 Factor model, the close form solution is:
Put_{zero} (t_0,t_1,t_2,K_{zero}) = K_{zero}P(t_0,t_1)\phi(-h+\sigma_{zero})-P(t_0,t_2)\phi(-h)
Where
\sigma_{zero}= \sigma_{black}\sqrt{\frac{1-e^{-2a(t_1-t_0)}}{2a}}B(t_1,t_2)
h=\frac{1}{\sigma_{zero}}ln{\frac{P(t-0,t_2)}{P(t_0,t_2)K_{zero}}+\frac{\sigma_{zero}}{2}}
source
Given that forward rate:
\tau_i.L(T_{i-1},T_i) = \frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}
Caplet Payoff:
X_{t_i}
= N.\tau_i.Max(0,L(T_{i-1},T_i)-K)
=N.Max(0,\tau_i.L(T_{i-1},T_i)-K.\tau_i)
=N.Max(0,\frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}-K.\tau_i)
Discounting to today:
Caplet Price:
= P(T_{i-1},T_i).N.Max(0,\frac{1-P(T_{i-1},T_i)}{P(T_{i-1},T_i)}-K.\tau_i)
= N.Max(0,1-(P(T_{i-1},T_i))(1+K.\tau_i))
= (1+K.\tau_i).N.Max(0,\frac{1}{(1+K.\tau_i)} - P(T_{i-1},T_i))
= N_{zero}.Max(0,K_{zero} -S_{zero})
This the pricing of a put option on a Zero Coupon Bond with
Notional: = (1+K.\tau_i).N
Strike:=\frac{1}{(1+K.\tau_i)}
This will be important when we compare with Hull White 1 Factor Zero Coupon Bond Put European Option. Under the Hull White 1 Factor model, the close form solution is:
Put_{zero} (t_0,t_1,t_2,K_{zero}) = K_{zero}P(t_0,t_1)\phi(-h+\sigma_{zero})-P(t_0,t_2)\phi(-h)
Where
\sigma_{zero}= \sigma_{black}\sqrt{\frac{1-e^{-2a(t_1-t_0)}}{2a}}B(t_1,t_2)
h=\frac{1}{\sigma_{zero}}ln{\frac{P(t-0,t_2)}{P(t_0,t_2)K_{zero}}+\frac{\sigma_{zero}}{2}}
source